Sergio J. Sanabria

Sergio J Sanabria was born in Vitoria, Spain, in 1984.  He received the M.Sc. Degree in Telecommunications Engineering from the University of the Basque Country, Bilbao, Spain, in 2007, and the Ph.D. degree from ETH Zurich, Switzerland, in 2012 (non-destructive testing of timber materials with air-coupled ultrasound). From 2012 to 2014, he was a postdoc at the Institute for Building Materials of ETH (multi-scale bio-composite imaging based on neutron and synchrotron tomography), from 2014 to 2017 he was Senior Assistant at the Computer Vision Laboratory of ETH (co-lead of ultrasound elastography research), and from 2017 to 2018 Pioneer Fellow at the Innovation and Entrepreneurship Laboratory of ETH (translation of breast cancer diagnosis technology based on speed-of-sound imaging). 

Since 2018, he is leading the physics and engineering research program at the Zurich Ultrasound Research & Translation group at USZ and pursuing his habilitation at the University of Zurich. Since October 2019, he is a visiting scholar at the Department of Radiology at Stanford School of Medicine

Sergio’ work lies in the intersection between ultrasound medical imaging, data science, and non-destructive material testing. His broad research goal is to objectivize ultrasound examination. With this purpose, he develops quantitative tissue imaging biomarkers as adjunct modalities to sonographic images. His research is translational, with the clinical aim of providing efficient diagnostics to manage high-prevalence diseases.

Sergio’s current-research interests include multi-parametric ultrasound biomarkers, deep-learning for tissue quantification and diagnostics, and dynamic processes in tissue. He is pursuing clinical applications related to liver, muscle, breast, and lung disease. 

Selected publications: [google scholar]

Ruby L, Kunut A, Nakhostin D, Huber F A, Finkenstaedt T, Frauenfelder T, [Rominger M B, Sanabria S J] (2020) Speed of Sound Ultrasound: Comparison with Proton Density Fat Fraction assessed with Dixon MRI for Fat Content Quantification of the Lower Extremity. European Radiology, https://doi.org/10.1007/s00330-020-06885-8. PubMED PMID: 32385650.

[Ruby L, Sanabria S J], Martini K, Dedes K J, Vorburger D, Oezkan E, Frauenfelder T, Goksel O and Rominger M (2019) Breast Cancer Assessment With Pulse-Echo Speed of Sound Ultrasound From Intrinsic Tissue Reflections: Proof-of-Concept. Investigative Radiology 54(7):419-427. DOI: 10.1097/RLI.0000000000000553. PubMed PMID: 30913054.

Ruby L, Mutschler T, Martini K, Klingmüller V, Frauenfelder T, Rominger M B, Sanabria S J (2019). Which Confounders Have the Largest Impact in Shear Wave Elastography of Muscle and How Can They be Minimized? An Elasticity Phantom, Ex-Vivo Porcine Muscle and Volunteer Study using a Commercially Available System. Ultrasound in Medicine & Biology 45(10):2591-2611, DOI: 10.1016/j.ultrasmedbio.2019.06.417. PubMed PMID:31375216. 

Marhenke T, Neuenschwander J, Furrer R, Zolliker P, Twiefel J, Hasener J, Wallaschek J, Sanabria S J (2020) Air-coupled ultrasound time reversal (ACU-TR) for subwavelength non-destructive imaging. IEEE Transactions Ultrasonics Ferroelectrics Frequency Control 67(3):651-663. DOI: 10.1109/TUFFC.2019.2951312. PubMed PMID: 31689191. 

Sanabria S J, Mannes D, Lanvermann C, Michel F, Niemz P. (2015) Adaptive neutron radiography correlation for simultaneous imaging of moisture transport and deformation in hygroscopic materials. Experimental Mechanics 55:403-415, https://doi.org/10.1007/s11340-014-9955-2 

Sanabria S J, Furrer R, Neuenschwander J, Schütz P, Niemz P (2015). Analytical modeling, finite- difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing. Ultrasonics 63:65-85, https://doi.org/10.1016/j.ultras.2015.06.013. PubMed PMID:26231999. Highlighted in Virtual Special on Air- coupled Ultrasound, Elsevier, 2017.  

Courses:

University Zurich – Mantelstudium Ultraschall – physics module

SGUM Abdomen Grundkurs – physics module